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In my research, I focus on emergent methods with impact in machine and human learning, as well as
prospective methods in data analysis. Towards more efficient computation on both ends, I focus on
topological methods which provide access to new and interesting information for machine learning,
such as shape, and mathematical reasoning for humans, through projects such as the fence challenge.

For the purpose of machine learning and data analysis, I investigate properties of metric spaces
through the lens of topological data analysis and magnitude. An isometric invariant of metric spaces,
magnitude has been shown to encode a number of other valuable invariants, such as dimension and
curvature. In particular, magnitude is known to be strongly connected to Minkowski dimension for
positive definite compact metric spaces. It stands to reason that magnitude could be leveraged to
estimate the dimensions of compact metric spaces from which point clouds are sampled. However,
the computational complexity of magnitude renders this prospect nearly impossible to realize for
metric spaces of larger size. In recent work with Sara Kalisnik and Nina Otter, we identify alpha
magnitude, an invariant arising from topological data analysis and inspired by magnitude, as a
method which provides a potential solution to this problem at substantially reduced computational
complexity.[OKO22]

Another topic I have worked on involves the application of reinforcement learning, evolutionary
algorithms, and A* search for the purpose of solving a higher dimensional sliding puzzle. Multi-agent
pathfinding is known to be NP-hard in even ideal cases, but to add further to the complexity, the
cubical sliding puzzle defeats existing complete methods through changing the underlying space of
valid moves based on the positions of marked vertices. Our implementations of RL and EA provide
an implementation of ML-based MAPF in exceedingly diverse environments, implying myriad possible
future directions for the implementation of both in learnable, NP-hard problems.[MOMR24]

Finally, for the purposes of outreach and measuring human learning, we have produced a full-stack
web development game project, which we have termed the Fence Challenge. The pentomino, a
polyominoid with 5 squares (the domino has 2) has 12 different configurations, up to rotation and
reflection. The question of the maximal area which can be enclosed by the 12 different pentominos
is a version of the isometric problem, for which the answer is known. However, the answer is not
known for all orders the pentominos can be placed in, for smaller subcollections of the pentominos,
nor is the order of pentominos producing the lowest maximal area known. These are all questions we
seek to understand human performance on through our implementation of the fence challenge as a
game, playable online or in person.
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Alpha Magnitude
Introduced in 2011 by Tom Leinster [Lei13], magnitude is an isometric invariant of metric spaces.
The computation for finite spaces is fairly straightforward. For metric space X, we begin with a
distance matrix D where each entry di,j represents the distance between point i and point j in space
X.

i = (0, 0)
•

j = (1, 0)
•

k = (1/2,
√
3/2)

•

A space of 3 equidistant points...

...and its distance matrix.

The similarity matrix.

To compute magnitude we first take the negative exponential of each entry of the above distance
matrix, referred to as a similarity matrix. We then find a vector such that the product of the vector
and the above matrix has only 1 in each entry. We refer to this vector as a weighting.

A weighting for the above metric space.

The sum of the entries in the weighting is referred to as the magnitude. Higher magnitudes correspond
to more less clustered spaces, and vice versa. But this computation required us to solve an Ax = b
matrix equation. Magnitude is suitable for computation in spaces of lower cardinality, but as spaces
become more populous magnitude becomes substantially more expensive, rendering it computationally
infeasible. On the other hand, magnitude bears strong connection to persistence as first demonstrated
by Otter [Ott22]. Govc and Hepworth [GH21] further develop this concept by defining persistent
magnitude for finite spaces, an invariant sharing many of the same properties held by magnitude,
and suggesting a definition for compact spaces. We improve on this concept by introducing alpha
magnitude, the persistent magnitude of an alpha complex of a metric space, and providing a definition
for the alpha magnitude of compact metric spaces. Unlike magnitude, in cases like the one above in
2 dimensions, the computational complexity of alpha magnitude scales only linearly with the number
of points.
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Example 2: The alpha complex for the space from before, at different filtration levels. The barcode
computed for the alpha complex is shown below.

We compute the alpha magnitude of the space X through the following equation over the barcode
{[ak,i, bk,i)}mk

i=1, where k is the homology degree and a and b are the endpoints of each bar. This
equation is the general term for the persistent magnitude of a space X, an invariant first introduced
by Govc and Hepworth [OKO22].

|X|α =
∞∑
k=0

mk∑
i=1

(−1)k(e−ak,i − e−bk,i) .

Alpha magnitude, like magnitude, is higher in scattered spaces and lower in concentrated ones. It
approaches the cardinality of the space as the distances become very large, and approaches 1 when
the distances become very small.

There are many definitions which exist to extend magnitude to compact spaces, but they are known
to agree for positive definite compact metric spaces, by a result of Meckes [Mec13]. The most
accessible is to take the magnitude of a positive definite compact metric space X to be

|X| = sup
#(A)<∞, A⊂X

|A|,

the supremal magnitude over all finite subsets of X. Similarly, for alpha magnitude, we take the
alpha magnitude of a compact metric space to be

|X|α = lim
#(A)<∞, A⊂X

|A|α

when this limit exists over all finite sequences of subsets converging to X.

For positive definite compact metric spaces, the following expression is known to be equivalent to
Minkowski dimension[Mec13]:

dimMink(X) = dimMag(X) = lim
t→∞

log |tX|
log t

.
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This limit is referred to as the magnitude dimension of the space X. While this result is initially
encouraging for the purposes of dimension estimation via sampling, magnitude is much too expensive.
Thus, we conjecture the following expression

dimα(X) = lim
t→∞

log |tX|α
log t

is equivalent to Minkowski dimension as well, where alpha magnitude exists. In the cases we examine,
such as the Cantor set and the unit circle with the metric inherited from R2, we prove this to be
true. For the Feigenbaum attractor, a set for which the Hausdorff dimension is only computationally
approximated, our estimation falls quite close to existing methods. Thus, we posit that alpha
magnitude dimension is a rich area to be examined in the interest of developing new means of
estimating dimension.

Approximately optimal search
The higher-dimensional sliding puzzle we study is built on a d-dimensional cube (Each node of the
cube is a binary string of length d, and two nodes are connected if they differ by a single bit) where
2d− l randomly selected vertices are coloured (i.e., l vertices are uncoloured or have the same colour).
Then, there are precisely 2d − l rings with the same colours initially set randomly on vertices. The
15-puzzle can be seen as a version of this game played on a (4× 4)-grid. In that setting, rings block
each other’s movement simply by being in the way. However, topologically, this can be considered to
represent the rule that movement is blocked when the 1-simplex where the ring would move over is
occupied by another ring. The higher-dimensional puzzle setting is a generalisation of this puzzle’s
setup as the (d, k, ℓ) scheme, where the puzzle is played on a d-dimensional cube with 2d− ℓ coloured
vertices and rings, and where each move consists of moving one ring to a vertex which shared the
same k-face so long as any other rings do not occupy that face [Wil74].
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While in lower dimensions, optimal solutions of this sort of puzzle can be easily computed (e.g, 15
puzzle, lower dimensions in [BMRV23]), higher dimensional versions like the ones we examine in
[MOMR24] are too expansive for this strategy to be viable. Further, existing methods of complete
solutions making use of the typical blocking properties in multi-agent pathfinding problems only
work for k = 1 in our above k-rule formulation, since rings can block movement across an entire
face, rather than just their own vertex. As such, the methods we establish for solving the game
are maximally general and can be applied to nearly any task requiring pathfinding on some form of
connected configuration space.

First, we approach the problem with evolutionary algorithms. Fundamentally, an implementation of
an EA involves the generation of multiple agents which independently work on the problem through
random action. A selection force is then applied in a linear fashion to the population of agents, with
agents performing better than others (determined by an objective function) more represented in the
next generation of agents. A mutation operator is then applied to determine the nature of the next
generation of agents, based on the previous one.

We also implement a reinforcement learning algorithm to solve the cubical sliding puzzle. For the
purpose of this problem, we make two notable changes from the usual method of implementing
RL in a pathfinding environment. First, we delay the assignment of rewards to the end of each
search episode, since it is unclear whether particular moves are helpful or not until the game is over.
Second, we implement an initial breadth-first search around the target configuration and assign initial
weights to configurations around the target configuration based on how close they are to the target
configuration. This process expedites the initial search the reinforcement learning algorithm performs,
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and provides optimal paths in proximity to the target configuration, improving the end result. While
BFS is expensive, we perform this search for a very small number of configurations, so the CPU time
expenditure is minimal.

Finally, we implement a version of A* search for the purpose of providing an optimal solution for this
problem. A* search works by moving between adjacent nodes based on a combined cost function.
The cost function for any given node x consists of a g-cost g(C) representing the distance traveled
to get to the node C from the starting configuration, and an h-cost h(C) representing the estimated
heuristic distance from node C to the target configuration. In the case of the sliding puzzle, our
heuristic function simply counts the number of moves it would take to get to the target configuration
from C if every node were completely unblocked.

We observe that while the performance of our RL implementation is more consistent than the EA
implementation, the RL algorithm is comparatively more expensive in terms of CPU time. In lower
dimensions A* is efficient enough, however for puzzles such as the d = 4, k = 3 case, we note that
A* fails to provide a solution in a reasonable timeframe. Both RL and EA are capable of providing
solutions in a shorter period.
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Stability of magnitude
In the case of magnitude, an important question remains the stability of magnitude for finite metric
spaces. This is a critical result in the use of magnitude for data analysis. If small shifts in the
underlying space can produce dramatically different magnitude, non-existent magnitude, or behavior
of the magnitude which is in some sense degenerate, magnitude becomes less useful as a tool for the
analysis of that dataset. Unfortunately, there are examples for which this is a very real possibility.
Consider K3,2, the bipartite complete graph on 3 and 2 points, endowed with the shortest path
metric.

• •

•• •

Example 3: The bipartite complete graph on 3 and 2 points, K3,2

The magnitude function for this space is

|tK3,2| =
5− 7e−t

(1 + e−t)(1− 2e−2t)

and is thus undefined at t = log(
√
2). We need to take care with cases like these. Leinster [Lei13]

establishes that the magnitude function (a partially defined function obtained by introducing a scale
factor t to a metric space (X, d)) is continuous at all but finitely many points in the space, and
increasing for t sufficiently large. An existing result of Meckes[Mec13] establishes that magnitude is
lower semicontinuous for positive definite finite metric spaces. In forthcoming work, we extend these
results to a result for the continuity of magnitude for finite metric spaces of strictly negative type.

We say a metric space (X, d) is of strictly negative type if for any subset of {x1, . . . , xn} ⊆ X, and
all real numbers ζ1, . . . , ζn ∈ R with ζ1 + ζ2 + . . .+ ζn = 0, we have∑

1≤i≤j≤n

d(xi, xj)ζiζj < 0.

For such spaces, (a class which includes all Euclidean spaces Rn with the usual metric) the magnitude
function |tX| is defined on t ∈ (0,∞) and can be extended to t ∈ [0,∞) in a continuous manner
by defining |tX| = 1. This is desirable since magnitude is meant to provide an evaluation of the
effective number of points in the space. However, if lim

t→0
|tX| ≠ 1, we have a function which tells us

a space with effectively one point has a different number.

The implications of a stability result of this nature for data science are substantial. So long as a
point cloud is known to exist in a metric space of strictly negative type, the magnitude function
will assuredly be continuous. Thus we achieve a wider class of datasets for which magnitude based
clustering algorithms, dimension estimation, and other methods employing magnitude may be applied.
In particular, finite data sets with irregular distance functions between observations become accessible
so long as the point cloud is of strictly negative type.
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Fence challenge and citizen science
Citizen science can be identified as the practice of involving non-researcher participants in the discov-
ery of new and interesting results for various fields. In the case of mathematics, CS is dramatically
underrepresented. We view this as unfortunate, since many areas (knots, combinatorial problems)
have the potential to be worked on with minimal or no formal training. The fence challenge is a
project we’ve undertaken to make a problem at the intersection of combinatorics and isoperimetric
problems accessible to the broadest audience possible.

The goal of the game is to take the 12 pentominos, or a subcollection as shown above, and create
as large of a fenced area as possible. This version of the isoperimetric problem allows players to
develop their own strategies for optimizing the enclosed area, and helps in the development of spatial
reasoning, as well as procedural problem solving. From the perspective of citizen science, we also
argue this method is more fruitful than exhaustively searching all possible configurations, as there
are simply too many possible orders of the 12 pentominos to search. Through a citizen science
approach, we can learn about the distribution of possible fences, as well as human performance on
similar problems involving optimization through spatial reasoning.[MO]

Future work

# omalley@informatik.uni-leipzig.de 8/11

https://fence-challenge-temp.vercel.app
mailto:omalley@informatik.uni-leipzig.de


In future work, I would seek to further develop the theory of alpha magnitude and the means through
which it may be employed in the service of data science. An open question is the stability of alpha
magnitude in compact spaces, which would be a natural question. For connections to other invariants,
magnitude is known to be related to curvature and volume, in addition to dimension. Persistent
homology is also known to have strong connection to curvature, and so it would be reasonable to
expect that alpha magnitude holds similar properties. Since alpha magnitude holds computational
advantage over magnitude, results providing a connection to other invariants potentially provide a
method to estimate these qualities with high fidelity.

Magnitude originally arose as a measure of biological diversity and thus bears strong correlation to
clustering in metric spaces. Alpha magnitude has similar properties by construction, and thus warrants
further study in this venue. I would develop algorithms which can be employed to use alpha magnitude
to detect clusters. In datasets of low dimension, alpha magnitude can be computed in as little as linear
time with respect to the cardinality of the dataset, again leveraging the computational advantage
over magnitude. I would further seek to demonstrate the usefulness of such algorithms in comparison
to existing methods of clustering. No clustering algorithm is perfect, but magnitude seems to be
a particularly good one. It stands to reason that alpha magnitude can provide comparable results.
Potential work could include identifying and classifying samples from natural fractal formations
such as snowflakes or fungi, as well as other datasets which lend themselves well towards clustering
analysis.

In addition, I would seek to employ magnitude in the estimation of dimension for datasets which
alpha magnitude is ill-equipped. Since we have a stability result, we can approach this question
with some confidence. In particular, magnitude is well suited towards computation for datasets of
low cardinality but high dimension. This is precisely where alpha magnitude is weaker, since the
computational speedup is only for datasets of lower dimension. Potential work could include medical
datasets, where we have few individuals but numerous observations for different characteristics,
survey data, and any other dataset where robust clustering analysis is desired and alpha magnitude
is unsuitable.

The implementations of magnitude in clustering are manifold. A hierarchical clustering algorithm
using magnitude is easily defined, simply by choosing clusters of lowest magnitude and working
upwards. Leinster [Lei13] demonstrates that magnitude increases over expansions of Euclidean space,
and our stability result assures that for spaces of negative type (such as Euclidean space) magnitude
is continuous on [0,∞), so the use of magnitude in hierarchical clustering is appropriate. Another
potential use of magnitude and alpha magnitude is as an easy check for other systems against existing
clustering algorithms. A proposed cluster with particularly high magnitude is likely not very clustered
at all, and so the use of magnitude provides a simple indicator as to whether a cluster ought to pass
muster.

Another direction in which I’d take the development of alpha magnitude and magnitude is through
implementation in machine learning environments. While magnitude is computationally inefficient in
many cases, there are some (as described above, datasets of low cardinality but high dimension) where
it makes sense. Others, such as Adamer et. al.[AODB+21], have found success using the magnitude
vector, a method which saves on computational expense by only considering local information. Such
methods have potential to improve results for clustering through considering datasets in patches, thus
allowing substantial computational speedup. I would further investigate the potential to employ such
methods in the use of magnitude in data science, and seek to otherwise enhance the computational
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speed of magnitude.

On the other hand, since alpha magnitude is so easily computed, and yields such stark results
in the case of the estimation of alpha magnitude dimension, it is reasonable to expect that ML
applications of alpha magnitude could be achieved in time comparable to faster clustering algorithms,
while preserving the richness of magnitude in the observations. The use of ML in clustering is well
established, so the methods through which alpha magnitude may be implemented already exist and
can be easily investigated to determine if there is improvement to be had. This direction of research
has the potential to be exceedingly valuable, especially in the analysis of complicated data structures
which defy traditional statistical methods of sorting. Topological data analysis has provided multiple
such results in the past (cancer types [NLC11], diabetes [LCG+15], etc.) and so the use of alpha
magnitude in similar settings is highly exciting.

Another subject I will pursue in future work is the extent to which ML algorithms, such as our RL and
EA implementations for the higher-dimensional cubical sliding puzzle, can be applied to pathfinding
settings in general. Any single-player game can be viewed as an instance of single or multi-agent
pathfinding, since ultimately the goal of the player is to find the shortest route between their starting
position and a "win" state, based on the moves they are allowed to make. I would further investigate
optimal conditions for the initial breadth-first search implemented in our RL algorithm. Since the
usage of some BFS outperforms both no BFS and entirely BFS, there is evidently an optimal amount
of BFS for any particular problem where RL can be implemented with a known target configuration.
Determining where this point of optimality lies, even roughly, would prove extremely promising for
any algorithm implementing ML techniques in the service of search.
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